Integration Area Under Graphs 2 - Edexcel Past Exam Questions

1.

Figure 1
Figure 1 shows the graph of the curve with equation

$$
y=\frac{16}{x^{2}}-\frac{x}{2}+1, \quad x>0 .
$$

The finite region R, bounded by the lines $x=1$, the x-axis and the curve, is shown shaded in Figure 1. The curve crosses the x-axis at the point $(4,0)$.

Use integration to find the exact value for the area of R.
2.

Figure 2
Figure 2 shows the line with equation $y=10-x$ and the curve with equation $y=10 x-x^{2}-8$. The line and the curve intersect at the points A and B, and O is the origin.
(a) Calculate the coordinates of A and the coordinates of B.

The shaded area R is bounded by the line and the curve, as shown in Figure 2.
(b) Calculate the exact area of R.
3.

Figure 3
Figure 3 shows a sketch of part of the curve C with equation

$$
y=x(x+4)(x-2) .
$$

The curve C crosses the x-axis at the origin O and at the points A and B.
(a) Write down the x-coordinates of the points A and B.

The finite region, shown shaded in Figure 3, is bounded by the curve C and the x-axis.
(b) Use integration to find the total area of the finite region shown shaded in Figure 3.
4.

Figure 1
The line with equation $y=10$ cuts the curve with equation $y=x^{2}+2 x+2$ at the points A and B as shown in Figure 1. The figure is not drawn to scale.
(a) Find by calculation the x-coordinate of A and the x-coordinate of B.

The shaded region R is bounded by the line with equation $y=10$ and the curve as shown in Figure 1.
(b) Use calculus to find the exact area of R.
5. Use integration to find

$$
\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x
$$

giving your answer in the form $a+b \sqrt{ } 3$, where a and b are constants to be determined.
6.

Figure 3
Figure 3 shows a sketch of part of the curve C with equation

$$
y=\frac{1}{8} x^{3}+\frac{3}{4} x^{2}, \quad x \in \mathbb{R}
$$

The curve C has a maximum turning point at the point A and a minimum turning point at the origin O.

The line l touches the curve C at the point A and cuts the curve C at the point B.
The x coordinate of A is -4 and the x coordinate of B is 2 .
The finite region R, shown shaded in Figure 3, is bounded by the curve C and the line l.
Use integration to find the area of the finite region R.
7. (a) Find

$$
\int 10 x\left(x^{\frac{1}{2}}-2\right) \mathrm{d} x
$$

giving each term in its simplest form.

Figure 2
Figure 2 shows a sketch of part of the curve C with equation

$$
y=10 x\left(x^{\frac{1}{2}}-2\right), \quad x \geq 0
$$

The curve C starts at the origin and crosses the x-axis at the point $(4,0)$.
The area, shown shaded in Figure 2, consists of two finite regions and is bounded by the curve C, the x-axis and the line $x=9$.
(b) Use your answer from part (a) to find the total area of the shaded regions.
8.

Figure 3
Figure 3 shows a sketch of part of the curve with equation

$$
y=3 x-x^{\frac{3}{2}} \quad x \geq 0 .
$$

The finite region S, bounded by the x-axis and the curve, is shown shaded in Figure 3.
(a) Find

$$
\begin{equation*}
\int\left(3 x-x^{\frac{3}{2}}\right) \mathrm{d} x . \tag{3}
\end{equation*}
$$

(b) Hence find the area of S.
9.

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
y=4 x^{3}+9 x^{2}-30 x-8, \quad-0.5 \leqslant x \leqslant 2.2
$$

The curve has a turning point at the point A.
(a) Using calculus, show that the x coordinate of A is 1

The curve crosses the x-axis at the points $B(2,0)$ and $C\left(\frac{1}{4}, 0\right)$
The finite region R, shown shaded in Figure 2, is bounded by the curve, the line $A B$, and the x-axis.
(b) Use integration to find the area of the finite region R, giving your answer to 2 decimal places.

