Solving Equations using Logarithms - Edexcel Past Exam Questions 2 $\frac{\text{MARK SCHEME}}{\text{MARK SCHEME}}$

Question number	Scheme	Marks
(a)	$\log_3 3x^2 = \log_3 3 + \log_3 x^2$ or $\log y - \log x^2 = \log 3$ or $\log y - \log 3 = \log x^2$	B1
	$\log_3 x^2 = 2\log_3 x$	B1
	Using $\log_3 3 = 1$	B1 (3)
(b)	$3x^2 = 28x - 9$	M1
	Solves $3x^2 - 28x + 9 = 0$ to give $x = \frac{1}{3}$ or $x = 9$	M1 A1 (3)
Notes (a)	B1 for correct use of addition rule (or correct use of subtraction rule) B1: replacing $\log x^2$ by $2\log x$ — not $\log 3x^2$ by $2\log 3x$ this is B0 These first two B marks are often earned in the first line of working B1. for replacing $\log 3$ by 1 (or use of $3^1 = 3$) If candidate has been awarded 3 marks and their proof includes an error or omission of reference to $\log y$ withhold the last mark. So just B1 B1 B0 These marks must be awarded for work in part (a) only	
(b)	M1 for removing logs to get an equation in x- statement in scheme is sufficient. This needs to be accurate without any errors seen in part (b). M1 for attempting to solve three term quadratic to give x = (see notes on marking quadratics) A1 for the two correct answers - this depends on second M mark only. Candidates often begin again in part (b) and do not use part (a). If such candidates make errors in log work in part (b) they score first M0. The second M and the A are earned as before. It is possible to get M0M1A1 or M0M1A0.	
Alternative to (b) using y	Eliminates x to give $3y^2 - 730y + 243 = 0$ with no errors is M1 Solves quadratic to find y, then uses values to find x M1 A1 as before	
	See extra sheet with examples illustrating the scheme.	

Question number	Scheme	Marks
97	$2\log x = \log x^2$	В1
	$\log_3 x^2 - \log_3 (x - 2) = \log_3 \frac{x^2}{x - 2}$	M1
	$\frac{x^2}{x-2} = 9$	Al o.e.
	Solves $x^2 - 9x + 18 = 0$ to give $x =$	M1
	x=3, $x=6$	A1
		Total 5
• 10	M1: for correct use of subtraction rule (or addition rule) for logs N.B. $2 \log_3 x - \log_3 (x - 2) = 2 \log_3 \frac{x}{x - 2}$ is M0 A1. for correct equation without logs (Allow any correct equivalent includin M1 for attempting to solve $x^2 - 9x + 18 = 0$ to give $x = 0$ (see notes on mar A1 for these two correct answers	
Alternative Method	$\log_3 x^2 = 2 + \log_3 (x - 2)$ is B1, so $x^2 = 3^{2 + \log_3 (x - 2)}$ needs to be followed by $(x^2) = 9(x - 2)$ for M1 A1. Here M1 is for complete method i.e.correct use of powers after logs are used	d correctly
Common Slips	$2 \log x - \log x + \log 2 = 2$ may obtain B1 if $\log x^2$ appears but the statem leads to no further marks $2 \log_3 x - \log_3 (x-2) = 2$ so $\log_3 x - \log_3 (x-2) = 1$ and $\log_3 \frac{x}{x-2} = 1$ correct subtraction rule following error, but no other marks	ent is M0 and so
Special Case	$\frac{\log x^2}{\log(x-2)} = 2 \text{ leading to } \frac{x^2}{x-2} = 9 \text{ and then to } x=3, x=6, \text{ usually earns}$ then earn M1A1 (special case) so 3/5 [This <i>recovery</i> after uncorrected error	
	Trial and error, Use of a table or just stating answer with both $x=3$ and $x=6$ B0M0A0 then final M1A1 i.e. $2/5$	should be awarde

Question Number	Sel	neme	Marks
(a)	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$	Correct use of $\log a - \log b = \log \frac{a}{b}$	M1
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$	Removes logs correctly	M1
	$\Rightarrow x^2 + 30x + 225 = 64x$ or $x + 30 + 225x^{-1} = 64$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$		A1
(b)	$(x-25)(x-9) = 0 \Rightarrow x = 25 \text{ or } x = 9$	M1: Correct attempt to solve the given quadratic as far as x = A1: Both 25 and 9	M1 A1
			[7]
*			
	5		

Number	on Scheme		Marks	
(a)	Either (Way 1): Attempt f(3) or f(-3)	Or (Way 2): Assume $a = -9$ and attempt $f(3)$ or $f(-3)$	M1	
	$f(3) = 54 - 45 + 3a + 18 = 0 \implies 3a = -27 \implies a = -9*$	f(3) = 0 so $(x - 3)$ is factor	A1 * csc	
	Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px$ is an expression in terms of a	+q where p is a number and q	M1	
	Sets the remainder $18+3a+9=0$ and solves to give $a=0$	= -9	A1* cso (2)	
(b)	Either (Way 1): $f(x) = (x-3)(2x^2 + x - 6)$		M1A1	
	=(x-3)(2x-3)(x+2)		M1A1	
	Or (Way 2) Uses trial or factor theorem to obtain $x = -2$		M1	
	Uses trial or factor theorem to obtain both $x = -2$ and $x = -2$	3/2	A1	
	Puts three factors together (see notes below) Correct factorisation: $(x-3)(2x-3)(x+2)$ or $(3-x)(3-x)(3-x)$	(2x)(x+2) or	M1	
	$2(x-3)(x-\frac{3}{2})(x+2)$ oe	TO 27	A1 (
	Or (Way 3) No working three factors $(x-3)(2x-3)(x-3)$	+ 2) otherwise need working	MIAIMIA	
(c)	$\left\{3^y = 3 \Rightarrow\right\} \ y = 1 \qquad \text{or } g(1) = 0$		B1	
	${3^y = 1.5 \Rightarrow \log(3^y) = \log 1.5 \text{ or } y = \log_3 1.5}$		M1	
	$\{y = 0.3690702\} \Rightarrow y = \text{awrt } 0.37$		A1 (3)	
	Notes for Question			
	Notes for Ques	tion	•	
(a)	Notes for Quest M1 for attempting either $f(3)$ or $f(-3)$ – with numbers			
(a)		substituted into expression		
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers	s substituted into expression 0, and manipulating this correctly	to give the	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick).	substituted into expression 0, and manipulating this correctly -9) Note that the answer is given in ision they must state $(x-3)$ is a fac	to give the part (a). tor for A	
(a) (b)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ.	s substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x - 3)$ is a fact beginning with the correct term, usu	to give the part (a). tor for A	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ (Could divide by $(3 - x)$), in which case the quadratic would methods including long division, comparison of coefficients.	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fac- beginning with the correct term, usually begin $-2x^2$.) This may be done to cients, inspection etc.	to give the part (a). tor for A	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ (Could divide by $(3 - x)$, in which case the quadratic word of methods including long division, comparison of coefficient A1: usually for $2x^2 + x - 6$ Credit when seen and	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fac- beginning with the correct term, usual ald begin $-2x^2$.) This may be done to cients, inspection etc. use isw if miscopied	to give the part (a). tor for A laddy 2x ² . by a variet	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ (Could divide by $(3 - x)$), in which case the quadratic would find the factorist of the factorist of coefficients of the factorist of th	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fac- beginning with the correct term, usually all begin $-2x^2$.) This may be done to cients, inspection etc. use isw if miscopied see notes on page 6 - General Prince	to give the part (a). tor for A laddy 2x ² . by a variet	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ (Could divide by $(3 - x)$, in which case the quadratic wood methods including long division, comparison of coefficient A1: usually for $2x^2 + x - 6$ Credit when seen and 2^{nd} M1: for a valid* attempt to factorise their quadratic (* Core Mathematics Marking section 1)	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fac- beginning with the correct term, usual ald begin $-2x^2$.) This may be done to cients, inspection etc. use isw if miscopied see notes on page 6 - General Prince equation.)	to give the part (a). tor for A laddy 2x ² . by a variet	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ (Could divide by $(3 - x)$, in which case the quadratic word of methods including long division, comparison of coefficient A1: usually for $2x^2 + x - 6$ Credit when seen and 2^{nd} M1: for a valid* attempt to factorise their quadratic (*Core Mathematics Marking section 1) 2^{nd} A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fac- beginning with the correct term, usual ald begin $-2x^2$.) This may be done to cients, inspection etc. use isw if miscopied see notes on page 6 - General Prince equation.)	to give the part (a). tor for A! nally $2x^2$. by a variet	
	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$. If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ of (Could divide by $(3 - x)$), in which case the quadratic would find the factorial divide by $(3 - x)$. Credit when seen and 2^{nd} M1: for a valid* attempt to factorise their quadratic (*Core Mathematics Marking section 1) 2nd A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic NB: $(x - 3)(x - \frac{3}{2})(x + 2)$ is M1A1M0A0, $(x - 3)(x - \frac{3}{2})(x - 2)$ is M1A1M1A1. B1: $y = 1$ seen as a solution – may be spotted as answer-	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fact beginning with the correct term, usuald begin $-2x^2$.) This may be done beints, inspection etc. use isw if miscopied see notes on page 6 - General Prince equation.) 10(2x + 4) is M1A1M1A0, but - no working needed. Allow also for	to give the part (a). tor for A: hally $2x^2$. by a variet	
(b)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers A1 for applying $f(3)$ correctly, setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div (or equivalent such as QED or a tick). 1st M1: attempting to divide by $(x - 3)$ leading to a 3TQ (Could divide by $(3 - x)$, in which case the quadratic work of methods including long division, comparison of coefficient A1: usually for $2x^2 + x - 6$ Credit when seen and 2^{nd} M1: for a valid* attempt to factorise their quadratic (*Core Mathematics Marking section 1) 2^{nd} A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic NB: $(x - 3)(x - \frac{3}{2})(x + 2)$ is M1A1M0A0, $(x - 3)(x - \frac{3}{2})(x - \frac{3}{2})(x + 2)$ is M1A1M1A1.	substituted into expression 0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x-3)$ is a fact beginning with the correct term, usuald begin $-2x^2$.) This may be done beints, inspection etc. use isw if miscopied see notes on page 6 - General Prince equation.) 10(2x + 4) is M1A1M1A0, but - no working needed. Allow also for	to give the part (a). tor for A: hally $2x^2$. by a variety a variety are $2x^2 = 2x^2$. The part $2x^2 = 2x^2$ in $2x^2 = 2x^2$.	

Number	Scheme	Marks
(i) Method 1	$\log_2\left(\frac{2x}{5x+4}\right) = -3 \text{ or } \log_2\left(\frac{5x+4}{2x}\right) = 3, \text{ or } \log_2\left(\frac{5x+4}{x}\right) = 4 \text{ (see special case 2)}$	M1
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{ or } \left(\frac{5x+4}{2x}\right) = 2^{3} \text{ or } \left(\frac{5x+4}{x}\right) = 2^{4} \text{ or } \left(\log_{2}\left(\frac{2x}{5x+4}\right)\right) = \log_{2}\left(\frac{1}{8}\right)$	M1
	$16x = 5x + 4 \implies x =$ (depends on previous Ms and must be this equation or equivalent)	dM1
	$x = \frac{4}{11}$ or exact recurring decimal 0.36 after correct work	A1 cso (4)
(i)	$\log_2(2x) + 3 = \log_2(5x + 4)$	
Method 2	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$ (3 replaced by $\log_2(8)$)	2 nd M1
	Then $\log_2(16x) = \log_2(5x + 4)$ (addition law of logs)	1st M1
	Then final M1 A1 as before	dM1A1
(ii)	$\log_a y + \log_a 2^3 = 5$	M1
	$log_a 8y = 5$ Applies product law of logarithms.	dM1
	$y = \frac{1}{8}a^5$ $y = \frac{1}{8}a^5$	Alcao
		(3) [7]
(i)	Notes for Question	
	1st M1: Applying the subtraction or addition law of logarithms correctly to make two log terms in x into one log term in x 2nd M1: For RHS of either 2^{-3} , 2^3 , 2^4 or $\log_2\left(\frac{1}{8}\right)$, $\log_2 8$ or $\log_2 16$ i.e. using connection between log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of $4/11$ with no suspect log work preceding this.	
	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = 3^{rd}$	between
(ii)	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of $4/11$ with no suspect log work preceding this.	between
(ii)	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of $4/11$ with no suspect log work preceding this. M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$	
(ii) (i)	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of $4/11$ with no suspect log work preceding this.	i
207-201	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{10} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of $4/11$ with no suspect log work preceding this. M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3$ $y = 5$ or $\log_a 8$ $y = 5$	4/1 or
207-201	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{xd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of 4/11 with no suspect log work preceding this. M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3$ $y = 5$ or $\log_a 8$ $y = 5$ special case 1: $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{10} \log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{10} \log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \log_2(5x + 4) = -3 \Rightarrow \log_2(5x + 4) = -$	4/1 or
207-201	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{xd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of 4/11 with no suspect log work preceding this. M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3$ $y = 5$ or $\log_a 8y = 5$ Special case 1: $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{10000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(5x + 4)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{1}{1000} \log_2(5x + 4) = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{1}{1000} \log_2(5x + 4) = $	$\frac{4}{1}$ or $\frac{4}{11}$ each
207-201	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of 4/11 with no suspect log work preceding this. M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3$ $y = 5$ or $\log_a 8y = 5$ Special case 1: $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{12}$ $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{12}$ attempt scores M0M1M1A0 – special case Special case 2: $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \log_2 2 + \log_2 x = \log_2(5x + 4) - 3$, is M0 until the two log terms	$\frac{4}{1}$ or $\frac{4}{11}$ each
207-201	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{xd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of 4/11 with no suspect log work preceding this. M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3$ $y = 5$ or $\log_a 8y = 5$ Special case 1: $\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \log_2\frac{2x}{5x + 4} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{10000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{\log_2(5x + 4)}{\log_2(5x + 4)} = -3 \Rightarrow \frac{2x}{5x + 4} = 2^{-3} \Rightarrow x = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{1}{1000} \log_2(5x + 4) = \frac{1}{1000} \log_2(5x + 4) - 3 \Rightarrow \frac{1}{1000} \log_2(5x + 4) = $	$\frac{4}{1}$ or $\frac{4}{11}$ each

Question Number	Scl	heme	Marks
(a)	Way 1: $\log_3(9x) = \log_3 9 + \log_3 x$	or Way 2: $\log_3(9x) = \log_3 3^{a+2}$	M1
	=2+a	=2+a	A1 (2)
(b)	Way 1: $\log_3\left(\frac{x^5}{81}\right) = \log_3 x^5 - \log_3 81$	or Way 2 = $\log_3 \frac{3^{5a}}{3^4}$	M1
	$\log x^5 = 5\log x \text{ or } \log 81 = 4\log 3 \text{ or } \log 81 = 4$	$= \log_3 3^{5a-4}$	M1
	= 5a	1-4	A1 cso
(c)	$\log_3\left(9x\right) + \log_3\left(\frac{x^5}{81}\right) = 3$		
	Method 1	Method 2	
	$\Rightarrow 2 + a + 5a - 4 = 3$	$\log_3\left(9x.\frac{x^5}{81}\right) = (3 \text{ or } \log 27)$	M1
	$\Rightarrow a = \frac{5}{6}$	$\log_3\left(\frac{x^6}{9}\right) = 3 \text{ or log } 27$	A1
	$\Rightarrow x = 3^{\frac{5}{6}} \text{ or } \log_{10} x = a \log_{10} 3 \text{ so } x = $ $x = 2.498 \text{ or awrt}$ $\Rightarrow \frac{x^6}{9} = 3^3 \Rightarrow x^6 = 3^5 \Rightarrow x = $ $x = 2.498 \text{ or awrt}$		M1
	x = 2.498 or awrt	x = 2.498 or awrt	A1
	If $x = -2.498$ appears as well or instead this is A0		Total
4 5		otes for Question	
(a)	Way 1: M1: Use of $log(ab) = log(a) + 1$ Way 2: Uses $x = 3^a$ to give $log_3(9x)$	log(b) A1: must be $a + 2$ or $2 + a$ = $\log_3 3^{a+2}$, A1 for $a + 2$ or $2 + a$	
(b)	Way 1: M1: Use of log(a/b) = log(a) - log(b) M1: Use of nlog(a) = log(a) ⁿ Way 2: M1 Use of correct powers of 3 in numerator and denominator M1: Subtracts powers A1: No errors seen		
(c)	Method 1: M1: Uses (a) and (b) results to form an equation in a (may not be linear) A1: a = awrt 0.833 M1: Finds x by use of 3 to a power, or change of base performed correctly A1: x = 2.498 (accept answer which round to this value from 2.498049533) Method 2: M1: Use of log(ab) = log(a) + log(b) in an equation (RHS may be wrong) A1: Equation correct and simplified M1: Tries to undo log by 3 to power correctly, and uses root to obtain x A1: x = 2.498 (accept answer which round to this value from 2.498049533) Lose this mark if negative answer is given as well as or instead of positive answer.		

Question Number	Scheme		Marks
	Graph of $y = 3^x$ and solving	$3^{2x} - 9(3^x) + 18 = 0$	
(a)		At least two of the three crite (See notes below.)	R1
		All three criteria corre (See notes below.)	777
	(0,1) O x	Criteria number 1: Correct curve for $x \ge 0$ and at least to positive y-axis. Criteria number 2: Correct curve for $x < 0$. Must not too axis or have any turning point Criteria number 3: $(0, 1)$ st a table or 1 marked on the y-a Allow $(1, 0)$ rather than $(0, 1)$ marked in the "correct" place axis.	shape of such the x-ts. sated or in exis.
			[2]
(b)	$(3^x)^2 - 9(3^x) + 18 = 0$ or $y = 3^x \implies y^2 - 9y + 18 = 0$	Forms a quadratic of the corresponding or in "y" where "y" = 3^x or where "x" = 3^x	
	$\{(y-6)(y-3)=0 \text{ or } (3^x-6)(3^x-3)=0\}$		
	$y = 6$, $y = 3$ or $3^x = 6$, $3^x = 3$	Both $y = 6$ and $y = 3$.	A1
	$\left\{3^{x} = 6 \Rightarrow\right\} x \log 3 = \log 6$ or $x = \frac{\log 6}{\log 3}$ or $x = \log_3 6$	A valid method for solving 3 where $k > 0$, $k \ne 1$, $k \ne 3$ $x \log 3 = \log x$ to give either $x = \frac{\log k}{\log 3}$ or $x = \frac{\log k}{\log 3}$	k or dM1
	x = 1.63092	awrt 1.63	Alcso
	Provided the first M1A1 is scored, the secon		
	x = 1	x = 1 stated as a solution from working.	ы
			[5]
52			Total 7

Question Number		Scheme	Mark
	$5^{y} = 8$		
	$y \log 5 = \log 8$	$y \log 5 = \log 8$ or $y = \log_5 8$	M1
(i)	$\left\{ y = \frac{\log 8}{\log 5} \right\} = 1.2920$	awrt 1.29	A1
	Allow cor	rect answer only	
2	les (n	(S) 4 No. 11	[2
	$\log_2(x + 1)$	$(5) - 4 = \frac{1}{2}\log_2 x$	<u> </u>
	$\log_2(x+15) - 4 = \log_2 x^{\frac{1}{2}}$	Applies the power law of logarithms seen at any point in their working	M1
	$\log_2\left(\frac{x+15}{x^{\frac{1}{2}}}\right) = 4$	Applies the subtraction or addition law of logarithms at any point in their working	M1
	$\left(\frac{x+15}{x^{\frac{1}{2}}}\right) = 2^4$	Obtains a correct expression with logs removed and no errors	M1
(ii)	$x - 16x^{\frac{1}{2}} + 15 = 0$ or e.g. $x^2 + 225 = 226x$	Correct three term quadratic in any form	A1
	$(\sqrt{x}-1)(\sqrt{x}-15)=0 \Rightarrow \sqrt{x}=$	A valid attempt to factorise or solve their three term quadratic to obtain $\sqrt{x} =$ or $x =$ Dependent on all previous method marks.	dddM
	$\{\sqrt{x} = 1, 15\}$		
	x = 1, 225	Both $x = 1$ and $x = 225$ (If both are seen, ignore any other values of $x \le 0$ from an otherwise correct solution)	A1
			[6
-	414		Total
	200	ernative: $15) - 8 = \log_2 x$	
	$\log_2(x+15)^2 - 8 = \log_2 x$	Applies the power law of logarithms	M1
	$\log_2\left(\frac{(x+15)^2}{x}\right) = 8$	Applies the subtraction law of logarithms	M1
	$\frac{(x+15)^2}{x} = 2^8$	Obtains a correct expression with logs removed	M1
	$x^2 + 30x + 225 = 256x$		2
	$x^2 - 226x + 225 = 0$	Correct three term quadratic in any form	A1
	$(x-1)(x-225) = 0 \Rightarrow x =$	A valid attempt to factorise or solve their 3TQ to obtain $x =$ Dependent on all previous method marks.	dddM1
	x=1, 225	Both $x = 1$ and $x = 225$ (If both are seen, ignore any other values of $x \le 0$ from an otherwise correct solution)	A1

$8^{2x+1} = 24$			
V V			
$(2x+1)\log 8 = \log 24$ or or $8^{2x} = 3$ and so $(2x)\log 8 = \log 3$ or $(2x+1) = \log_8 24$ $(2x) = \log_8 3$	M1		
$x = \frac{1}{2} \left(\frac{\log 24}{\log 8} - 1 \right)$ or $x = \frac{1}{2} (\log_8 24 - 1)$ $x = \frac{1}{2} \left(\frac{\log 3}{\log 8} \right)$ or $x = \frac{1}{2} (\log_8 3)$ o.e.	dM1		
=0.264	A1 (3)		
$\log_2(11y - 3) - \log_2 3 - 2\log_2 y = 1$			
$\log_2(11y - 3) - \log_2 3 - \log_2 y^2 = 1$	M1		
$\log_2 \frac{(11y - 3)}{3y^2} = 1$ or $\log_2 \frac{(11y - 3)}{y^2} = 1 + \log_2 3 = 2.58496501$	dM1		
$\log_2 \frac{(11y - 3)}{3y^2} = \log_2 2 \text{ or } \log_2 \frac{(11y - 3)}{y^2} = \log_2 6 \text{ (allow awrt 6 if replaced by 6 later)}$	B1		
Obtains $6v^2 - 11v + 3 = 0$ o.e. i.e. $6v^2 = 11v - 3$ for example			
Solves quadratic to give $y =$			
$v = \frac{1}{2}$ and $\frac{3}{2}$ (need both- one should not be rejected)			
3 44 (4000 004 040 400 400 400 400 400 40	(6) [9]		
M1: Applies power law of logarithms replacing $2\log_2 y$ by $\log_2 y^2$ dM1: Applies quotient or product law of logarithms correctly to the three log terms including term in y^2 . (dependent on first M mark) or applies quotient rule to two terms and collects constants (allow "triple" fractions) $1+\log_2 3$ on RHS is not sufficient – need, $\log_2 6$ or 2.58			
e.g. $\log_2(11y - 3) = \log_2 3 + \log_2 y^2 + \log_2 2$ becoming $\log_2(11y - 3) = \log_2 6y^2$			
B1 : States or uses $\log_2 2 = 1$ or $2^1 = 2$ at any point in the answer so may be given for			
$\log_2(11y-3) - \log_2 3 - 2\log_2 y = \log_2 2$ or for $\frac{(11y-3)}{3y^2} = 2$, for example (Sometimes this			
mark will be awarded before the second M mark, and it is possible to score M1M0B1in some cases)			
A1: This or equivalent quadratic equation (does not need to be in this form but should be equal ddM1: (dependent on the two previous M marks) Solves their quadratic equation following a log work using factorising, completion of square, formula or implied by both answers correct A1: Any equivalent correct form – need both answers- allow awrt 0.333 for the answer 1/3 *NB: If "=0" is missing from the equation but candidate continues correctly and obtains correctly and obtains correctly are continued to the continu	easonable ect		
	$\log_2(11y-3) - \log_2 3 - 2\log_2 y = 1$ $\log_2\left(\frac{11y-3}{3y^2}\right) = 1 \qquad \text{or} \qquad \log_2\left(\frac{11y-3}{y^2}\right) = 1 + \log_2 3 = 2.58496501$ $\log_2\left(\frac{11y-3}{3y^2}\right) = \log_2 2 \text{or} \log_2\left(\frac{11y-3}{y^2}\right) = \log_2 6 \text{ (allow awrt 6 if replaced by 6 later)}$ $Obtains 6y^2 - 11y + 3 = 0 \text{o.e. i.e. } 6y^2 = 11y - 3 \text{ for example}$ $Solves \text{ quadratic to give } y = y = \frac{1}{3} \text{ and } \frac{3}{2} \text{ (need both- one should not be rejected)}$ $\mathbf{M1: Takes \log s \text{ and uses law of powers correctly. (Any log base may be used) Allow lack of dM1: Make x subject of their formula correctly (may evaluate the log before subtracting 1 are alculate e.g. (1.528-1)/2) A1: Allow answers which round to 0.264 \mathbf{M1: Applies power law of logarithms replacing 2\log_2 y \text{ by } \log_3 y^2} \mathbf{dM1: Applies quotient or product law of logarithms correctly to the three log terms including y^2. (dependent on first M mark) or applies quotient rule to two terms and collects constants (a "triple" fractions) 1 + \log_2 3 on RHS is not sufficient – need \log_2 6 or 2.58 e.g. \log_2(11y-3) = \log_2 3 + \log_2 y^2 + \log_2 2 becoming \log_2(11y-3) = \log_2 6y^2 B1: States or uses \log_2 2 = 1 or 2^1 = 2 at any point in the answer so may be given for \log_2\left(11y-3\right) - \log_2 3 - 2\log_2 y = \log_2 2 or for \frac{(11y-3)}{3y^2} = 2, for example (Sometime mark will be awarded before the second M mark, and it is possible to score M1M0B1in some Or may be given for log 26 = 2.584962501 or 2^{2.584962501} = 6 A1: This or equivalent quadratic equation (does not need to be in this form but should be equivalent quadratic equation following 1 log work using factorising, completion of square, formula or implied by both answers corrected.$		

Question	Scheme	Marks
Number (i)	Two Ways of answering the question are given in part (i)	
Way 1	$\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms	M1
	$\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{or} \left(\frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.	М1
	${9b+3=a-2 \Rightarrow} b = \frac{1}{9}a - \frac{5}{9}$ $b = \frac{1}{9}a - \frac{5}{9}$ or $b = \frac{a-5}{9}$	A1 oe
20	In Way 2 a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs	121
(i) Way 2	Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$	2 nd M1
, 2	$\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right)$ or $\log_3 3(3b+1) = \log_3(a-2)$	1 st M1
	${3b+1=\frac{a-2}{3}}$ $b=\frac{1}{9}a-\frac{5}{9}$	A1
		[3]
3	Five Ways of answering the question are given in part (ii)	(6)
(ii) Way 1	$32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32	M1
See also common approach below in notes	So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219	A1 oe
notes	$x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$ Or $2^x = k$ to achieve $x = \dots$	
0	x = -2.192645 awrt -2.19	A1 [4]
	Begins with $2^{2x+5} = 7(2^x)$ (for Way 2 and Way 3) (see notes below)	
Way 2	Correct application of $(2x + 5)\log 2 = \log 7 + x \log 2$ either the power law or addition law of logarithms	M1
	Correct result after applying the power and addition laws of logarithms. $2x\log 2 + 5\log 2 = \log 7 + x\log 2$	A1
	$\Rightarrow x = \frac{\log 7 - 5\log 2}{\log 2}$ Multiplies out, collects x terms to achieve $x =$	dM1
	x = -2.192645 awrt -2.19	A1 [4]
90	Evidence of log, and either $2^{2x+5} \rightarrow 2x+5$	2000000
Way 3	$2x + 5 = \log_2 7 + x$ or $7(2^x) \to \log_2 7 + \log_2 (2^x)$	M1
	$2x + 5 = \log_2 7 + x$ oe.	A1
	$2x - x = \log_2 7 - 5$ $\Rightarrow x = \log_2 7 - 5$ Collects x terms to achieve $x =$	dM1
	x = -2.192645 awrt -2.19	A1
9		[4]

(ii) Way 4	$2^{2x+5} = 7(2^x) \Rightarrow 2^{x+5} = 7$		E C
****	$x + 5 = \log_2 7 \text{ or } \frac{\log 7}{\log 2}$	Evidence of \log_2 and either $2^{x+5} \rightarrow x+5$ or $7 \rightarrow \log_2 7$	M1
	10g 2	$x + 5 = \log_2 7$ oe.	A1
	$x = \log_2 7 - 5$	Rearranges to achieve $x =$	dM1
	x = −2.192645	awrt -2.19	A1
			[4]
Way 5 (similar to	$2^{2x+5} = 2^{\log_2 7} (2^x)$	7 is replaced by $2^{\log_2 7}$	M1
Way 3)	$2x + 5 = \log_2 7 + x$	$2x + 5 = \log_2 7 + x$ oe.	A1
	$2x - x = \log_2 7 - 5$ $\Rightarrow x = \log_2 7 - 5$	Collects x terms to achieve $x =$	dM1
	x = -2.192645	awrt -2.19	A1
			[4]
			7

	- 8	Question Notes
(i)	1 st M1	Applying either the addition or subtraction law of logarithms correctly to combine any two log terms into one log term.
	2 nd M1	For making a correct connection between log base 3 and 3 to a power.
	Al	$b = \frac{1}{9}a - \frac{5}{9}$ or $b = \frac{a-5}{9}$ o.e. e.g. Accept $b = \frac{1}{3}(\frac{a}{3} - \frac{5}{3})$ but not $b = \frac{a-2}{9} - \frac{3}{9}$ nor $b = \frac{\left(\frac{a}{3} - \frac{5}{3}\right)}{3}$
(ii)	1 st M1	First step towards solution - an equation with one side or other correct or one term dealt with correctly (see five* possible methods above)
	1st A1	Completely correct first step - giving a correct equation as shown above
	dM1	Correct complete method (all log work correct) and working to reach $x = in terms of logs$
	2 nd A1	reaching a correct expression or one where the only errors are slips solving linear equations Accept answers which round to -2.19 If a second answer is also given this becomes A0
	Special Case in	Writes $\frac{\log_3(3b+1)}{\log_3(a-2)} = -1$ and proceeds to $\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\}$ and to correct answer-Give
	(i)	M0M1A1 (special case)
	Common	Let $2^x = y$ Treat this as Way 1 They get $32y^2 - 7y = 0$ for M1 and need to reach $y = \frac{7}{32}$ for A1
	approach to part	Then back to Way I as before. Any letter may be used for the new variable which I have called y.
	(ii)	If they use x and obtain $x = \frac{7}{32}$, this may be awarded M1A0M0A0
		Those who get $y^2 - 7y + 32 = 0$ or $y^7 - 7y = 0$ will be awarded M0, A0, M0, A0
	Common	Many begin with $\log(2^{2x+5}) - \log(7(2^x)) = 0$. It is possible to reach this in two stages
	Present- ation of Work in	correctly so do not penalise this and award the full marks if they continue correctly as in Way 2. If however the solution continues with $(2x+5)\log 2-x\log 14=0$ or with
	ii	$(2x+5)\log 2-7x\log 2=0$ (both incorrect) then they are awarded M1A0M0A0 just getting
		credit for the $(2x + 5) \log 2$ term.
	Note	N.B. The answer (+)2.19 results from "algebraic errors solving linear equations" leading to $2^x = \frac{32}{7}$ and gets M1A0M1A0

Question Number	9	Scheme	Marks
(i)	Use of power rule so $\log(x+a)^2 = \log 16a^6$ or $2\log(x+a) = 2\log 4a^3$ or $\log(x+a) = \log(16a^6)^{\frac{1}{2}}$ Removes logs and square roots, or halves then removes logs to give $(x+a) = 4a^3$ Or $x^2 + 2ax + a^2 - 16a^6 = 0$ followed by factorisation or formula to give $x = \sqrt{16a^6} - a$ $(x=) 4a^3 - a$ (depends on previous M's and must be this expression or equivalent)		M1
			M1
			A1cao
(ii) Way 1	$\log_3 \frac{(9y+b)}{(2y-b)} = 2$	Applies quotient law of logarithms	M1
	$\frac{(9y+b)}{(2y-b)} = 3^2$	Uses $\log_3 3^2 = 2$	M1
	$(9y+b) = 9(2y-b) \Rightarrow y =$	Multiplies across and makes y the subject	M1
	$y = \frac{10}{9}b$		A1cso (4)
Way 2	Or: $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$	2 nd M mark	M1
	$\log_3(9y + b) = \log_3 9(2y - b)$	$1^{st} M mark$	M1
	$(9y+b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$	Multiplies across and makes y the subject	M1 A1cso (4)

Notes (i) 1st M1: Applies power law of logarithms correctly to one side of the equation M1: Correct log work in correct order. If they square and obtain a quadratic the algebra should be correct. The marks is for $x + a = \sqrt{16a^6}$ is wso allow $x + a = \pm 4a^3$ for Method mark. Also allow $x + a = 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evidence of attempted square root. May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ which gains M1A0 unless followed by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the factorised a(2a + 1)(2a - 1) o.e. M1: Applying the subtraction or addition law of logarithms correctly to make two log terms (11) into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the scheme and attempts y =A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work. Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2 \text{ is M0 unless clearly crossed out and replaced by the correct } \log_3\frac{(9y+b)}{(2y-b)} = 2$ Candidates may then write $\frac{(9y+b)}{(2y-b)} = 3^2$ and proceed to the *correct* answer – allow M0M1M1A0 as the answer requires a completely correct solution.