Solving Equations using Logarithms 2 - Edexcel Past Exam Questions

1. Given that $y=3 x^{2}$,
(a) show that $\log _{3} y=1+2 \log _{3} x$.
(b) Hence, or otherwise, solve the equation

$$
\begin{equation*}
1+2 \log _{3} x=\log _{3}(28 x-9) . \tag{3}
\end{equation*}
$$

Jan 12 Q4
2. Find the values of x such that

$$
\begin{equation*}
2 \log _{3} x-\log _{3}(x-2)=2 \tag{5}
\end{equation*}
$$

3. Given that $2 \log _{2}(x+15)-\log _{2} x=6$,
(a) show that $x^{2}-34 x+225=0$.
(b) Hence, or otherwise, solve the equation $2 \log _{2}(x+15)-\log _{2} x=6$.

Jan 13 Q6
4.

$$
\mathrm{f}(x)=2 x^{3}-5 x^{2}+a x+18
$$

where a is a constant.
Given that $(x-3)$ is a factor of $\mathrm{f}(x)$,
(a) show that $a=-9$,
(b) factorise $\mathrm{f}(x)$ completely.

Given that

$$
g(y)=2\left(3^{3 y}\right)-5\left(3^{2 y}\right)-9\left(3^{y}\right)+18,
$$

(c) find the values of y that satisfy $g(y)=0$, giving your answers to 2 decimal places where appropriate.
5. (i) Find the exact value of x for which

$$
\begin{equation*}
\log _{2}(2 x)=\log _{2}(5 x+4)-3 . \tag{4}
\end{equation*}
$$

(ii) Given that

$$
\log _{a} y+3 \log _{a} 2=5,
$$

express y in terms of a.
Give your answer in its simplest form.
6. Given that $\log _{3} x=a$, find in terms of a,
(a) $\log _{3}(9 x)$
(b) $\log _{3}\left(\frac{x^{5}}{81}\right)$
giving each answer in its simplest form.
(c) Solve, for x,

$$
\begin{equation*}
\log _{3}(9 x)+\log _{3}\left(\frac{x^{5}}{81}\right)=3 \tag{4}
\end{equation*}
$$

giving your answer to 4 significant figures.
June(R) 13 Q6
7. (a) Sketch the graph of

$$
y=3^{x}, x \in \mathbb{R},
$$

showing the coordinates of any points at which the graph crosses the axes.
(b) Use algebra to solve the equation $3^{2 x}-9\left(3^{x}\right)+18=0$, giving your answers to 2 decimal places where appropriate.
8. (i) Solve

$$
5^{y}=8
$$

giving your answers to 3 significant figures.
(ii) Use algebra to find the values of x for which

$$
\begin{equation*}
\log _{2}(x+15)-4=\frac{1}{2} \log _{2} x \tag{6}
\end{equation*}
$$

9. (i) Use logarithms to solve the equation $8^{2 x+1}=24$, giving your answer to 3 decimal places.
(ii) Find the values of y such that

$$
\log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1, \quad y>\frac{3}{11}
$$

10. (i) Given that

$$
\begin{equation*}
\log _{3}(3 b+1)-\log _{3}(a-2)=-1, \quad a>2, \tag{3}
\end{equation*}
$$

express b in terms of a.
(ii) Solve the equation

$$
2^{2 x+5}-7\left(2^{x}\right)=0,
$$

giving your answer to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
11. (i)
$2 \log (x+a)=\log \left(16 a^{6}\right)$, where a is a positive constant
Find x in terms of a, giving your answer in its simplest form.
(ii) $\quad \log _{3}(9 y+b)-\log _{3}(2 y-b)=2$, where b is a positive constant

Find y in terms of b, giving your answer in its simplest form.

