Modelling with Differentiation - Edexcel Past Exam Questions 2

1.

Figure 3
Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius x metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to x metres and width equal to y metres.

Given that the area of the flowerbed is $4 \mathrm{~m}^{2}$,
(a) show that

$$
\begin{equation*}
y=\frac{16-\pi x^{2}}{8 x} . \tag{3}
\end{equation*}
$$

(b) Hence show that the perimeter P metres of the flowerbed is given by the equation

$$
\begin{equation*}
P=\frac{8}{x}+2 x . \tag{3}
\end{equation*}
$$

(c) Use calculus to find the minimum value of P.
(d) Find the width of each rectangle when the perimeter is a minimum.

Give your answer to the nearest centimetre.
2.

rigure 3
A manufacturer produces pain relieving tablets. Each tablet is in the shape of a solid circular cylinder with base radius $x \mathrm{~mm}$ and height h mm , as shown in Figure 3 .

Given that the volume of each tablet has to be $60 \mathrm{~mm}^{3}$,
(a) express h in terms of x,
(b) show that the surface area, $A \mathrm{~mm}^{2}$, of a tablet is given by $\mathrm{A}=2 \pi x^{2}+\frac{120}{x}$.

The manufacturer needs to minimise the surface area $A \mathrm{~mm}^{2}$, of a tablet.
(c) Use calculus to find the value of x for which A is a minimum.
(d) Calculate the minimum value of A, giving your answer to the nearest integer.
(e) Show that this value of A is a minimum.
3. The curve C has equation $y=6-3 x-\frac{4}{x^{3}}, x \neq 0$.
(a) Use calculus to show that the curve has a turning point P when $x=\sqrt{ } 2$.
(b) Find the x-coordinate of the other turning point Q on the curve.
(c) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(d) Hence or otherwise, state with justification, the nature of each of these turning points P and Q.

Jan 13 Q8
4. The curve with equation

$$
y=x^{2}-32 \sqrt{ } x+20, \quad x>0,
$$

has a stationary point P.
Use calculus
(a) to find the coordinates of P,
(b) to determine the nature of the stationary point P.

June 13 Q9
5. Using calculus, find the coordinates of the stationary point on the curve with equation

$$
\begin{equation*}
y=2 x+3+\frac{8}{x^{2}}, \quad x>0 \tag{6}
\end{equation*}
$$

June 13(R) Q1
6.

Figure 4

Figure 5

Figure 4 shows a closed letter box $A B F E H G C D$, which is made to be attached to a wall of a house.

The letter box is a right prism of length $y \mathrm{~cm}$ as shown in Figure 4. The base $A B F E$ of the prism is a rectangle. The total surface area of the six faces of the prism is $S \mathrm{~cm}^{2}$.

The cross section $A B C D$ of the letter box is a trapezium with edges of lengths $D A=9 x \mathrm{~cm}$, $A B=4 x \mathrm{~cm}, B C=6 x \mathrm{~cm}$ and $C D=5 x \mathrm{~cm}$ as shown in Figure 5.

The angle $D A B=90^{\circ}$ and the angle $A B C=90^{\circ}$. The volume of the letter box is $9600 \mathrm{~cm}^{3}$.
(a) Show that $y=\frac{320}{x^{2}}$.
(b) Hence show that the surface area of the letter box, $S \mathrm{~cm}^{2}$, is given by $S=60 x^{2}+\frac{7680}{x}$.
(c) Use calculus to find the minimum value of S.
(d) Justify, by further differentiation, that the value of S you have found is a minimum.
7.

Figure 4
Figure 4 shows the plan of a pool.
The shape of the pool $A B C D E F A$ consists of a rectangle $B C E F$ joined to an equilateral triangle $B F A$ and a semi-circle $C D E$, as shown in Figure 4.

Given that $A B=x$ metres, $E F=y$ metres, and the area of the pool is $50 \mathrm{~m}^{2}$,
(a) show that

$$
\begin{equation*}
y=\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{ } 3) \tag{3}
\end{equation*}
$$

(b) Hence show that the perimeter, P metres, of the pool is given by

$$
\begin{equation*}
P=\frac{100}{x}+\frac{x}{4}(\pi+8-2 \sqrt{ } 3) \tag{3}
\end{equation*}
$$

(c) Use calculus to find the minimum value of P, giving your answer to 3 significant figures.
(d) Justify, by further differentiation, that the value of P that you have found is a minimum.
8. A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of 75π cm^{3}.

The cost of polishing the surface area of this glass cylinder is $£ 2$ per cm^{2} for the curved surface area and $£ 3$ per cm^{2} for the circular top and base areas.

Given that the radius of the cylinder is $r \mathrm{~cm}$,
(a) show that the cost of the polishing, $£ C$, is given by

$$
\begin{equation*}
C=6 \pi r^{2}+\frac{300 \pi}{r} \tag{4}
\end{equation*}
$$

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.
(c) Justify that the answer that you have obtained in part (b) is a minimum.
9.

Diagram not drawn to scale

Figure 4
Figure 4 shows a plan view of a sheep enclosure.
The enclosure $A B C D E A$, as shown in Figure 4, consists of a rectangle $B C D E$ joined to an equilateral triangle $B F A$ and a sector $F E A$ of a circle with radius x metres and centre F.

The points B, F and E lie on a straight line with $F E=x$ metres and $10 \leq x \leq 25$.
(a) Find, in m^{2}, the exact area of the sector $F E A$, giving your answer in terms of x, in its simplest form.

Given that $B C=y$ metres, where $y>0$, and the area of the enclosure is $1000 \mathrm{~m}^{2}$,
(b) show that

$$
\begin{equation*}
y=\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3}) . \tag{3}
\end{equation*}
$$

(c) Hence show that the perimeter P metres of the enclosure is given by

$$
P=\frac{1000}{x}+\frac{x}{12}(4 \pi+36-3 \sqrt{3}) .
$$

(d) Use calculus to find the minimum value of P, giving your answer to the nearest metre.
(e) Justify, by further differentiation, that the value of P you have found is a minimum.

