Straight line graphs - Edexcel Past Exam Questions 2 MARK SCHEME

Question	Scheme	Marks		
(a)	$(m=)\frac{2}{3}$ (or exact equivalent)	B1 (1)		
(b)	B: (0, 4) [award when first seen – may be in (c)]	B1		
	Gradient: $\frac{-1}{m} = -\frac{3}{2}$	Ml		
	$y-4 = -\frac{3x}{2}$ or equiv. e.g. $\left(y = -\frac{3x}{2} + 4, 3x + 2y - 8 = 0\right)$	A1 (3)		
(c)	A: (-6,0) [award when first seen – may be in (b)]	B1		
	C: $\frac{3x}{2} = 4 \implies x = \frac{8}{3}$ [award when first seen – may be in (b)]	Blft		
	Area: Using $\frac{1}{2}(x_c - x_A)y_B$	Ml		
	$= \frac{1}{2} \left(\frac{8}{3} + 6 \right) 4 = \frac{52}{3} \left(= 17 \frac{1}{3} \right)$	Al cso (4		
ALT	$BC = \frac{4}{6}\sqrt{52}$ (from similar triangles) (or possibly using C)	2 nd B1ft		
	Area: Using $\frac{1}{2}(AB \times BC)$ N.B. $AB = \sqrt{6^2 + 4^2} = \sqrt{52}$	Ml		
	$=\frac{1}{2}\times\sqrt{52}\times\left(\frac{2}{3}\sqrt{52}\right)=\frac{52}{3}\left(=17\frac{1}{3}\right)$	A1		
0		8 marks		
0	Notes	8		
(a)	B1 for $\frac{2}{3}$ seen. Do not award for $\frac{2}{3}x$ and must be in part (a)			
(b)	B1 for coordinates of B. Accept 4 marked on y-axis (clearly labelled) M1 for use of perpendicular gradient rule. Follow through their value for m			
	Al for a correct equation (any form, need not be simplified). Answer only 3/	3		
(c)	1 st B1 for the coordinates of A (clearly labelled). Accept -6 marked on x-ax	cis		
	2^{nd} Blft for the coordinates of C (clearly labelled) or $AC = \frac{26}{3}$.			
	Accept $x = \frac{8}{3}$ marked on x-axis. Follow through from l_2 if >0			
	M1 for an expression for the area of the triangle (all lengths > 0). Ft their 4, - 6 and $\frac{8}{3}$			
	Al cso for $\frac{52}{3}$ or exact equivalent seen but must be a single fraction or $17\frac{1}{3}$	or $17\frac{2}{6}$ etc		
	$17\frac{1}{3}$ on its own can only score full marks if A, B and C are all correct.			
ALT	2^{nd} Blft If they use this approach award this mark for C (if seen) or BC			
Use of Det	2^{nd} M1 must get as far as: $\frac{1}{2} x_A \times y_B - x_C \times y_B $			

Question Number	Scheme	Marks
	$L_1: 4y + 3 = 2x \implies y = \frac{1}{2}x - \frac{3}{4}; A(p, 4) \text{ lies on } L_1.$ $\{p = \} 9\frac{1}{2} \text{ or } \frac{19}{2} \text{ or } 9.5$	
(a)	${p =} 9\frac{1}{2} \text{ or } \frac{19}{2} \text{ or } 9.5$	B1
		[1]
(b)	${4y + 3 = 2x} \Rightarrow y = \frac{2x - 3}{4} \Rightarrow m(L_1) = \frac{1}{2} \text{ or } \frac{2}{4}$	M1 A1
	So $m(L_2) = -2$	B1ft
	L_2 : $y - 4 = -2(x - 2)$ L_2 : $2x + y - 8 = 0$ or L_2 : $2x + 1y - 8 = 0$	M1
		A1
		[5]
(c)	$\{L_1 = L_2 \Rightarrow\}$ $4(8-2x) + 3 = 2x$ or $-2x + 8 = \frac{1}{2}x - \frac{3}{4}$ x = 3.5, y = 1	M1
	x = 3.5, y = 1	A1, A1 cso
		[3]
(d)	$CD^{2} = ("3.5" - 2)^{2} + ("1" - 4)^{2}$ $CD = \sqrt{("3.5" - 2)^{2} + ("1" - 4)^{2}}$	"M1"
	$CD = \sqrt{("3.5" - 2)^2 + ("1" - 4)^2}$	A1 ft
	$= \sqrt{1.5^2 + 3^2} = 1.5 \sqrt{1^2 + 2^2} = 1.5 \sqrt{5} \text{ or } \frac{3}{2} \sqrt{5} (*)$	A1 cso
		[3]
(e)	Area = triangle ABC + triangle ABE	
	$= \frac{1}{2} \times \frac{3}{2} \sqrt{5} \times \sqrt{80} + \frac{1}{2} \times 3\sqrt{5} \times \sqrt{80}$ Finding the area of any triangle.	M1
	$= \frac{3}{4}\sqrt{5} \times 4\sqrt{5} + \frac{3}{2}\sqrt{5} \times 4\sqrt{5}$	
	$=\frac{3}{4}(20)+\frac{3}{2}(20)$	B1
	= 45	A1
		[3]
		15

Question Number	Scheme	Marks
(a)	Gradient of l_2 is $\frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$	B1
	Either $y - 6 = \frac{1}{2}(x - 5)$ or $y = \frac{1}{2}x + c$ and $0 = \frac{1}{2}(5) + c \implies c = \frac{7}{2}$	M1
	x-2y+7=0 or $-x+2y-7=0$ or $k(x-2y+7)=0$ with k an integer	A1 [5
(b)	Puts $x = 0$, or $y = 0$ in their equation and solves to find appropriate co-ordinate	M1
(0)	x-coordinate of A is -7 and y-coordinate of B is $\frac{7}{2}$.	A1 cao
(c)	Area $OAB = \frac{1}{2}(7)\left(\frac{7}{2}\right) = \frac{49}{4} \text{ (units)}^2$ $Applies \pm \frac{1}{2} \text{(base)(height)}$ $\frac{49}{4}$	M1 A1cso
	Notes	7 marks
(a) (b) (c)	B1: Must have $\frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$ o.e. stated and stops, or used in their line equation M1: Full method to obtain an equation of the line through $(5,6)$ with their " m ". So $y - 6 = m(x - 1)$ their gradient or uses $y = mx + c$ with $(5,6)$ and their gradient to find c . Allow any numerical graincluding -2 or -1 but not zero. (Allow $(6,5)$ as a slip if $y - y_1 = m(x - x_1)$ is quoted first.) A1: Accept any multiple of the correct equation, provided that the coefficients are integers and equivalent. Since $-x + 2y - 7 = 0$ or $-x + 2y - 7 = 0$ or even $-x - 7 = 0$. M1: Either one of the x -or x -or x -or x -or equivalent. Need not be written as co-ordinated just $-x$ -or and $-x$ -or x -or x -or x -or equivalent. Need not be written as co-ordinated just $-x$ -or and $-x$ -or expectation which is which may be awarded the A1. M1: Any correct method for area of triangle $-x$ -or equivalent. Need not be used. A1: Any exact equivalent to $-x$ -or expectation $-x$ -or equivalent to $-x$ -or expectation $-x$ -or ex	uation = 0 s. Even may includ
	Note: Special cases: $\frac{1}{2}(-7)\left(+\frac{7}{2}\right) = -\frac{49}{4}$ (units) ² is M1 A0 but changing sign to area = $+\frac{49}{4}$ g (recovery) N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{2}$. may also get $\frac{49}{4}$ as their ansi following previous errors. They should be awarded A0 as this answer is not ft and is for correct so Special Case: In (a) and (b): Produces parallel line instead of perpendicular line: So uses $m = -2.7$ treated as a misread as it simplifies the question. The marks will usually be B0 M1 A0, M1 A0, M	wer olution only This is not

Question Number	Scheme	Notes	Marks
(a)	$4x + 2y - 3 = 0 \Rightarrow y = -2x + \frac{3}{2}$	Attempt to write in the form $y =$	M1
	\Rightarrow gradient = -2	Accept any un-simplified form and allow even with an incorrect value of "c"	A1
(a) Way 2	Alternative: $4 + 2 \frac{dy}{dx} = 0$	Attempt to differentiate Allow $p \pm q \frac{dy}{dx} = 0$, $p, q \neq 0$	M1
	\Rightarrow gradient = -2	Accept any un-simplified form	A1
	Answer only sco	res M1A1	
		70	[2]
(b)	Using $m_N = -\frac{1}{m_T}$	Attempt to use $m_N = \frac{1}{gradient\ from\ (a)}$	M1
	$y-5 = \frac{1}{2}(x-2)$ or Uses $y = mx + c$ in an attempt to find c	Correct straight line method using a 'changed' gradient and the point (2, 5)	M1
	$y = \frac{1}{2}x + 4$	Cao (Isw)	A1
			(3)
			[5]

Question Number	Scheme		Marks
(a)	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{12 - 3}{11 - (-1)}, = \frac{3}{4}$	M1:Correct method for the gradient A1: Any correct fraction or decimal	M1,A1
	$y-3 = \frac{3}{4}(x+1)$ or $y-12 = \frac{3}{4}(x-11)$ or $y = \frac{3}{4}x + c$ with attempt at substitution to find c	Correct straight line method using either of the given points and a numerical gradient.	M1
	4y - 3x - 15 = 0	Or equivalent with integer coefficients (= 0 is required)	A1
	This A1 should only	be awarded in (a)	
			(4
(a)	$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} \Rightarrow \frac{y - 3}{12 - 3} = \frac{x + 1}{11 + 1}$	M1: Use of a correct formula for the straight line	M1A1
Way 2	$y_2 - y_1$ $x_2 - x_1$ 12 - 3 11 + 1	A1: Correct equation	
	12(y-3) = 9(x+1)	Eliminates fractions	M1
	4y - 3x - 15 = 0	Or equivalent with integer coefficients (= 0 is required)	A1
			(4
(b)	Solves their equation from part (a) and L_2 simultaneously to eliminate one variable	Must reach as far as an equation in x only or in y only. (Allow slips in the algebra)	M1
	x = 3 or y = 6	One of $x = 3$ or $y = 6$	A1
	Both $x = 3$ and $y = 6$	Values can be un-simplified fractions.	A1
	Fully correct answers with no	working can score 3/3 in (b)	
			(3
(b) Way 2	$(-1,3) \rightarrow -a + 3b + c = 0$ $(11,12) \rightarrow 11a + 12b + c = 0$	Substitutes the coordinates to obtain two equations	M1
	$\therefore a = -\frac{3}{4}b, \ b = -\frac{4}{15}c$ e.g. $c = 1 \Rightarrow b = -\frac{4}{15}, \ a = \frac{3}{15}$	Obtains sufficient equations to establish values for a , b and c	A1
	e.g. $c = 1 \Rightarrow b = -\frac{4}{15}$, $a = \frac{3}{15}$	Obtains values for a, b and c	M1
	$\frac{3}{15}x - \frac{4}{15}y + 1 = 0 \Rightarrow 4y - 3x - 15 = 0$	Correct equation	A1
			(4
			[7

Question Number	Scheme	Marks
	(a) $2x + 3y = 26 \Rightarrow 3y = 26 \pm 2x$ and attempt to find m from $y = mx + c$	M1
	$(\Rightarrow y = \frac{26}{3} - \frac{2}{3}x)$ so gradient $= -\frac{2}{3}$	A1
	Gradient of perpendicular = $\frac{-1}{\text{their gradient}}$ (= $\frac{3}{2}$)	M1
	Line goes through (0,0) so $y = \frac{3}{2}x$	A1
	(b) Solves their $y = \frac{3}{2}x$ with their $2x + 3y = 26$ to form equation in x or in y	(4) M1
	Solves their equation in x or in y to obtain $x = \text{or } y =$	dM1
	x=4 or any equivalent e.g. 156/39 or $y=6$ o.a.e	A1
	$B=(0,\frac{26}{3})$ used or stated in (b)	B1
	Method 1 (see other methods in notes below)	
	Area = $\frac{1}{2}$ ×"4"× $\frac{"26"}{3}$	dM1
	$=\frac{52}{3}$ (oe with integer numerator and denominator)	A1
		(6) (10 marks)

Notes

(a) M1 Complete method for finding gradient. (This may be implied by later correct answers.) e.g. Rearranges $2x + 3y = 26 \Rightarrow y = mx + c$ so m =

Or finds coordinates of two points on line and finds gradient e.g. (13,0) and (1,8) so $m = \frac{8-0}{1-13}$

- A1 States or implies that gradient = $-\frac{2}{3}$ condone $-\frac{2}{3}x$ if they continue correctly. Ignore errors in constant term in straight line equation
- M1 Uses $m_1 \times m_2 = -1$ to find the gradient of l_2 . This can be implied by the use of $\frac{-1}{\text{their gradient}}$
- A1 $y = \frac{3}{2}x$ or 2y 3x = 0 Allow $y = \frac{3}{2}x + 0$ Also accept 2y = 3x, y = 39/26x or even $y 0 = \frac{3}{2}(x 0)$ and isw

Notes Continued

- (b) M1 Eliminates variable between their $y = \frac{3}{2}x$ and their (possibly rearranged) 2x + 3y = 26 to form an equation in x or y. (They may have made errors in their rearrangement)
 - dM1 (Depends on previous M mark) Attempts to solve their equation to find the value of x or y
 - A1 x = 4 or equivalent or y = 6 or equivalent
 - B1 y coordinate of B is $\frac{26}{3}$ (stated or implied) isw if written as $(\frac{26}{3}, 0)$. Must be used or stated in (b)
 - dM1 (Depends on previous M mark) Complete method to find area of triangle OBC (using their values of x and/or y at point C and their 26/3)

A1 Cao
$$\frac{52}{3}$$
 or $\frac{104}{6}$ or $\frac{1352}{78}$ o.e

Method 1:

Uses the area of a triangle formula $\frac{1}{2} \times OB \times (x \text{ coordinate of } C)$

Alternative methods: Several Methods are shown below. The only mark which differs from Method 1 is the last M mark and its use in each case is described below:

Method 2 in 9(b) using
$$\frac{1}{2} \times BC \times OC$$

dM1 Uses the area of a triangle formula $\frac{1}{2} \times BC \times OC$ Also finds OC (= $\sqrt{52}$) and BC= ($\frac{4}{3}\sqrt{13}$)

Method 3 in 9(b) using
$$\frac{1}{2} \begin{vmatrix} 0 & 4 & 0 & 0 \\ 0 & 6 & \frac{26}{3} & 0 \end{vmatrix}$$

dM1 States the area of a triangle formula $\frac{1}{2}\begin{vmatrix} 0 & 4 & 0 & 0 \\ 0 & 6 & \frac{26}{3} & 0 \end{vmatrix}$ or equivalent with their values

Method 4 in 9(b) using area of triangle OBX – area of triangle OCX where X is point (13, 0)

dM1 Uses the correct subtraction
$$\frac{1}{2} \times 13 \times "\frac{26}{3}" - \frac{1}{2} \times 13 \times "6"$$

Method 5 in 9(b) using area = $\frac{1}{2}$ (6 × 4) + $\frac{1}{2}$ (4 × 8/3) drawing a line from C parallel to the x axis and dividing triangle into two right angled triangles

dM1 for correct method area =
$$\frac{1}{2}$$
 ("6" × "4") + $\frac{1}{2}$ ("4" × ["26/3"-"6"])

Method 6 Uses calculus

$$dM1 \int_{0}^{4} \frac{26}{3} - \frac{2x}{3} - \frac{3x}{2} dx = \left[\frac{26}{3} x - \frac{x^{2}}{3} - \frac{3x^{2}}{4} \right]_{0}^{4}$$

Question Number	Scheme	Marks	5
	Method 1 Method 2		
(a)	gradient = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - (-4)}{-1 - 7}$, = $-\frac{3}{4}$ $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$, so $\frac{y - y_1}{6} = \frac{x - x_1}{-8}$	M1, A1	
	$y-2=-\frac{3}{4}(x+1)$ or $y+4=-\frac{3}{4}(x-7)$ or $y=their'-\frac{3}{4}'x+c$	M1	
	$\Rightarrow \pm (4y + 3x - 5) = 0$	A1	(4)
	Method 3: Substitute $x = -1$, $y = 2$ and $x = 7$, $y = -4$ into $ax + by + c = 0$	M1	
	-a + 2b + c = 0 and $7a - 4b + c = 0$	A1	
	Solve to obtain $a = 3$, $b = 4$ and $c = -5$ or multiple of these numbers	M1 A1	(4)
(b)	Attempts gradient $LM \times gradient \ MN = -1$ so $-\frac{3}{4} \times \frac{p+4}{16-7} = -1$ or $\frac{p+4}{16-7} = \frac{4}{3}$ Or $(y+4) = \frac{4}{3}(x-7)$ equation with $x = 16$ substituted	M1	
	$p+4=\frac{9\times 4}{3} \Rightarrow p=\dots, p=8$ So $y=, y=8$	M1, A1	(2)
Alternative			(3)
for (b)	Attempt Pythagoras: $(p+4)^2 + 9^2 + (6^2 + 8^2) = (p-2)^2 + 17^2$	M1	
	So $p^2 + 8p + 16 + 81 + 36 + 64 = p^2 - 4p + 4 + 289 \implies p =$	M1	
	p = 8	A1	
			(3)
(c)	Either $(y=)$ $p+6$ or $2+p+4$ Or use 2 perpendicular line equations through L and N and solve for y	M1	
	(y =) 14	A1	(2)
		(91	(2) narks)

- (a) M1 Uses the gradient formula with points L and M i.e. quote $gradient = \frac{y_1 y_2}{x_1 x_2}$ and attempt to substitute correct numbers. Formula may be implied by the correct $\frac{2 (-4)}{-1 7}$ or equivalent.
 - A1 Any correct single fraction gradient i.e $\frac{6}{-8}$ or equivalent
 - Uses their gradient with either (-1, 2) or (7, -4) to form a linear equation

 Eg $y-2=their'-\frac{3}{4}'(x+1)$ or $y+4=their'-\frac{3}{4}'(x-7)$ or $y=their'-\frac{3}{4}'x+c$ then find a value for c by substituting (-1,2) or (7, -4) in the correct way(not interchanging x and y)
 - A1 Accept $\pm k(4y + 3x 5) = 0$ with k an integer (This implies previous M1)
- (b) M1 Attempts to use gradient $LM \times gradient \ MN = -1$. ie. $-\frac{3}{4} \times \frac{p+4}{16-7} = -1$ (allow sign errors)
 - Or Attempts Pythagoras correct way round (allow sign errors)
 - M1 An attempt to solve their linear equation in 'p'. A1 cao p = 8
- (c) M1 For using their numerical value of p and adding 6. This may be done by any complete method (vectors, drawing, perpendicular straight line equations through L and N) or by no method. Assuming x = 7 is M0
 - A1 Accept 14 for both marks as long as no incorrect working seen (Ignore left hand side allow k). If there is wrong working resulting fortuitously in 14 give M0A0. Allow (8, 14) as the answer.

Question Number	Scheme		
(a)	$9x-4x^3 = x(9-4x^2)$ or $-x(4x^2-9)$	Takes out a common factor of x or $-x$ correctly.	B1
	$9-4x^2 = (3+2x)(3-2x)$ or $4x^2-9 = (2x-3)(2x+3)$	$9-4x^2 = (\pm 3 \pm 2x)(\pm 3 \pm 2x)$ or $4x^2 - 9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$	M1
	Dec /100 - 00// 1 200// 200	but allow equivalents e.g. $3-2x)(-3+2x)$ or $-x(2x+3)(2x-3)$	A1
Note: 4x	$x^3 - 9x = x(4x^2 - 9) = x(2x - 3)(2x + 3)$ so	$9x-4x^3 = x(3-2x)(2x+3)$ would score	e full marks
	Note: Correct work leading to $9x(1-x)$	$-\frac{2}{3}x$)(1+ $\frac{2}{3}x$) would score full marks	
	Allow $(x \pm 0)$ or $(-x \pm$	0) instead of x and -x	
		100 100 4	(3
(b)	> ↑	A cubic shape with one maximum and one minimum	M1
		Any line or curve drawn passing through (not touching) the origin	B1
	(-1.5,0) 0 (1.5,0) x	Must be the correct shape and in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must be on the diagram (Allow $\sqrt{\frac{9}{4}}$ for 1.5)	A1
			(
(c)	A = (-2, 14), B = (1, 5)	B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	B1 B1
[These must be seen or used in (c)		
	$(AB =) \sqrt{(-2-1)^2 + (14-5)^2} (= \sqrt{90})$	Correct use of Pythagoras including the square root. Must be a correct expression for their A and B if a correct formula is not quoted	M1
	E.g. $AB = \sqrt{(-2+1)^2 + (14-5)^2}$ scores M0. However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} = \sqrt{(-2+1)^2 + (14-5)^2}$ scores M1		
	$(AB =) 3\sqrt{10}$	cao	A1
			(4
			(10 marks

Question Number	Scheme	e	Notes		Marks
(a)	l_1 : passes through (0,	2) and (3, 7) l ₂ : g	oes through (3, 7) and is per	rpendicular to l_1	
	Gradient of l_1 is	$\frac{7-2}{3-0}\left(=\frac{5}{3}\right)$	$m(l_1) = \frac{7-2}{3-0}$. Allow un-sin May be implied.	plified.	B1
	$m(l_2) = -1 \div t$	heir $\frac{5}{3}$	Correct application of perper	ndicular gradient	M1
	$y-7 = "-\frac{3}{5}"$ or $y = "-\frac{3}{5}" x + c, 7 = "-\frac{3}{5}"$		M1: Uses $y - 7 = m(x - 3)$? gradient or uses $y = mx + c$ their changed gradient to fin A1ft: Correct fl equation for gradient (this is dependent)	with (3, 7) and ad a value for c their perpendicular	M1A1ft
	3x + 5y - 4	4 = 0	Any positive or negative into be seen in (a) and must inclu		A1
			M1: Puts $y = 0$ and finds a v	alue for v from their	[5]
(b)	When $y = 0$	$c = \frac{44}{3}$	equation A1: $x = \frac{44}{3} \left(\text{ or } 14\frac{2}{3} \text{ or } 14.6 \right)$		M1 A1
(0)	Condone	3y - 5y - 44 = 0 on	equivalent. $(y = 0 \text{ not neede})$	d)	22 3
	Condone $3x - 5y - 44 = 0$ only leading to the correct answer and condone coordinates written as $(0, 44/3)$ but allow recovery in (c)				
1				100 0 XX401 (**)	[2]
(c)	GENERAL APPROACH:				
	Correct attempt at finding the area of any one of the triangles or one of the trapezia but not just one rectangle. The correct pair of 'base' and 'height' must be used for a triangle and the correct formula used for a trapezium. If Pythagoras is required, then it must be used correctly with the correct end coordinates. Note that the first three marks apply to their calculated coordinates e.g. their $\frac{44}{3}$, $\frac{44}{5}$, $\frac{6}{5}$			M1	
3	etc. But the given coordinates must be correct e.g. (0, 2) and (3, 7). A correct numerical expression for the area of one triangle or one trapezium for their coordinates.			A1ft	
	Combines the correct areas together correctly for their chosen "way". Note that if correct numerical expressions for areas have been incorrectly simplified before combining them, then this M1 may still be given. Dependent on the first method mark.			dM1	
	Correct numerical expression for the area of ORQP. The expressions must be fully correct for this mark i.e. no follow through.			A1	
	Correct exact area e.g. $54\frac{1}{3}$, $\frac{163}{6}$, $\frac{326}{6}$, 54.3 or any exact equivalent			A1	
	Shape	Vertices	Numerical Expression	Exact Area	
	Triangle	TRQ	$\frac{\frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)}{\frac{1}{2} \times \frac{6}{5} \times 2}$	245 6	
	Triangle	SPO	$\frac{1}{2} \times \frac{6}{5} \times 2$	<u>6</u> 5	
	Triangle	PWQ	$\frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	51 5	
	Triangle	PVQ	$\frac{1}{2} \times (7-2) \times 3$	$\frac{15}{2}$	

-					т —
	Triangle	vwq	$\frac{1}{2} \times \left(\frac{44}{5} - 7\right) \times 3$	27 10	
	Triangle	QUR	$\frac{1}{2} \times \left(\frac{44}{3} - 3\right) \times 7$	245 6	
	Triangle	PQR	$\frac{\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}}{\frac{1}{2} \times \frac{34}{3} \times 5}$	119	
	Triangle	PNQ	$\frac{1}{2} \times \frac{34}{3} \times 5$	119 3 85 3	
	Triangle	OPQ	1/2×2×3	3	
	Triangle	OQR		154 3	
	Triangle	OWR	$\frac{\frac{1}{2} \times \frac{44}{3} \times 7}{\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}}$	154 3 968 15	
	Triangle	SQR	$\frac{1}{2} \times \left(\frac{44}{3} + \frac{6}{5}\right) \times 7$	833 15	
	Triangle	OPR	$\frac{1}{2} \times \frac{44}{3} \times 2$	$\frac{44}{3}$ $\frac{27}{2}$	
	Trapezium	OPQT	$\frac{1}{2}(2+7)\times 3$	$\frac{27}{2}$	
	Trapezium	OPNR	$\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$	26	
	Trapezium	OVQR	$\frac{1}{2} \times \left(3 + \frac{44}{3}\right) \times 7$	371 6	
(c)		EX	XAMPLES WAY 1		
	$OPQT = \frac{1}{2}$ o $TRQ = \frac{1}{2} \times 7$	r	M1: Correct method for <i>OF</i> A1ft: $OPQT = \frac{1}{2}(2+7) \times 3$ $TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$	No.	M1A1ft
	$\frac{1}{2}(2+7)\times 3+\frac{1}{2}$	$\times 7 \times \left(\frac{44}{3} - 3\right)$	dM1: Correct numerical conthat have been calculated on A1: Fully Correct numericarea ORQP	orrectly	dM1A1
	54	1/3	Any exact equivalent e.g. 1	$\frac{63}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times (7+2) \times 3 + \frac{1}{2} \times \frac{"35"}{3} \times 7$$
$$= \frac{27}{2} + \frac{245}{6} = \frac{326}{6}$$

	WAY 2		
0	$PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$	M1: Correct method for PQR or OPR	
	$OPR = \frac{1}{2} \times \frac{44}{3} \times 2$	A1ft: $PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$ or $OPR = \frac{1}{2} \times \frac{44}{3} \times 2$	MIAIft
9	$\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34} + \frac{1}{2} \times \frac{44}{3} \times 2$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
	54 ½	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times \frac{\text{"44"}}{3} \times 2 + \frac{1}{2} \times \sqrt{34} \times \text{"} \frac{7}{3} \sqrt{34} \text{"}$$
$$= \frac{88}{6} + \frac{238}{6} = \frac{326}{6}$$

	WAY 3	
$SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$	M1: Correct method for SQR or SPO	
$SPO = \frac{1}{2} \times \frac{6}{5} \times 2$	A1ft: $SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$ or $SPO = \frac{1}{2} \times \frac{6}{5} \times 2$	M1A1ft
$\frac{1}{2} \times 7 \times \frac{238}{15} - \frac{1}{2} \times \frac{6}{5} \times 2$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times \frac{"238"}{15} \times 7 - \frac{1}{2} \times \frac{"6"}{5} \times 2$$
$$= \frac{1666}{30} - \frac{6}{5} = \frac{1630}{30}$$

1	WAY 4	
$PVQ = \frac{1}{2} \times 5 \times 3$	M1: Correct method for PVQ or QUR	
$QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$	A1ft: $PVQ = \frac{1}{2} \times 5 \times 3$ or $QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$	M1A1ft
OVUR $7 \times \frac{44}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times 7 \times \frac{35}{3}$	dM1: Correct numerical combination of areas that have been calculated correctly	20111
$0 VOR / \times \frac{3}{3} - \frac{1}{2} \times 3 \times 3 - \frac{1}{2} \times 7 \times \frac{3}{3}$	A1: Fully Correct numerical expression for the area ORQP	dM1A1
54 ½	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$7 \times \frac{\text{"44"}}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times \frac{\text{"35"}}{3} \times 7$$
$$= \frac{308}{3} - \frac{15}{2} - \frac{245}{6} = \frac{326}{6}$$

0		WAY 5	
	$OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or $PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	M1: Correct method for <i>OWR</i> or <i>PWQ</i> A1ft: $OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or $PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	M1A1ft
9)	$\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
	54 <u>1</u>	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times \frac{\text{"44"}}{5} \times \frac{\text{"44"}}{3} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$$
$$= \frac{968}{15} - \frac{51}{5} = \frac{163}{3}$$

	WAY 6	05
$OPNR = \frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$ or	M1: Correct method for <i>OPNR</i> or <i>PNQ</i> A1ft: $OPNR = \frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$	M1A1ft
$PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$	$PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$	
$\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2 + \frac{1}{2} \times \frac{34}{3} \times 5$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
54 🕆	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times \left(\frac{"34"}{3} + \frac{"44"}{3}\right) \times 2 + \frac{1}{2} \times \frac{"34"}{3} \times 5$$
$$= \frac{156}{6} + \frac{170}{6} = \frac{326}{6}$$

	WAY 7	
1	M1: Correct method for OPQ or OQR	
$OPQ = \frac{1}{2} \times 3 \times 2$ $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$	A1ft: $OPQ = \frac{1}{2} \times 3 \times 2$ or $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$	M1A1ft
$\frac{1}{2} \times 3 \times 2 + \frac{1}{2} \times \frac{44}{3} \times 7$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
54 1	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times 3 \times 2 + \frac{1}{2} \times \frac{\text{"44"}}{3} \times 7$$
$$= 3 + \frac{308}{6} = \frac{326}{6}$$

	WAY 8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1: Uses the vertices of the quadrilateral to form a determinant $\begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$	M1A1ft
0 0 7 2 0	A1ft: $\frac{1}{2} \begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$	
$\frac{1}{2}\left(\frac{44}{3}\times7+3\times2\right)$	dM1: Fully correct determinant method with no errors	2) (1) 1
$\overline{2}(\overline{3} \times 7 + 3 \times 2)$	A1: Fully Correct numerical expression for the area ORQP	dM1A1
54 1	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

There will be other ways but the same approach to marking should be applied.

Question Number	Sch	eme	Marks
(a)	Gradient of $l_1 = \frac{4}{5}$ oe	States or implies that the gradient of $l_1 = \frac{4}{5}$. E.g. may be implied by a perpendicular gradient of $-\frac{5}{4}$. Do not award this mark for just rearranging to $y = \frac{4}{5}x + \dots$ unless they then state e.g. $\frac{dy}{dx} = \frac{4}{5}$	B1
	Point $P = (5, 6)$	States or implies that P has coordinates $(5, 6)$. $y = 6$ is sufficient. May be seen on the diagram.	B1
	$-\frac{5}{4} = \frac{y - 6"}{x - 5}$ or $y - 6" = -\frac{5}{4}(x - 5)$ or $"6" = -\frac{5}{4}(5) + c \Rightarrow c = \dots$	Correct straight line method using $P(5, "6")$ and gradient of $-\frac{1}{\operatorname{grad} l_1}$. Unless $-\frac{5}{4}$ or $-\frac{1}{4}$ is being used as the gradient here, the gradient of l_1 clearly needs to have been identified and its negative reciprocal attempted to score this mark.	М1
	5x + 4y - 49 = 0	Accept any integer multiple of this equation including "= 0"	A1
(b)	$y = 0 \Rightarrow 5x + 4(0) - 49 = 0 \Rightarrow x = \dots$ or $y = 0 \Rightarrow 5(0) = 4x + 10 \Rightarrow x = \dots$	Substitutes $y = 0$ into their l_2 to find a value for x or substitutes $y = 0$ into l_1 or their rearrangement of l_1 to find a value for x . This may be implied by a correct value on the diagram.	M1
	$y = 0 \Rightarrow 5x + 4(0) - 49 = 0 \Rightarrow x = \dots$ and $y = 0 \Rightarrow 5(0) = 4x + 10 \Rightarrow x = \dots$	Substitutes $y = 0$ into their l_2 to find a value for x and substitutes $y = 0$ into l_1 or their rearrangement of l_1 to find a value for x . This may be implied by correct values on the diagram.	М1
	(Note that at T , $x = 9$	9.8 and at S, x = -2.5	

$\frac{\text{Method 1: } \frac{1}{2}ST \times "6"}{\frac{1}{2} \times ('9.8'-'-2.5') \times '6' = \dots}$ $\frac{\text{Method 2: } \frac{1}{2}SP \times PT}{\frac{1}{2} \times \sqrt{(5-'-2.5')^2 + ('6')^2} \times \sqrt{('9.8'-5)^2 + ('6')^2} = \dots}$ $\left(= \frac{1}{2} \times \frac{3\sqrt{41}}{2} \times \frac{6\sqrt{41}}{5} \right)$ Note that if the method is correct but slips are made when simplifying	
$\frac{1}{2} \times \sqrt{(5 - ' - 2.5')^2 + ('6')^2} \times \sqrt{('9.8' - 5)^2 + ('6')^2} = \dots$ $\left(= \frac{1}{2} \times \frac{3\sqrt{41}}{2} \times \frac{6\sqrt{41}}{5} \right)$ Note that if the method is correct but slips are made when simplifying	
$\left(=\frac{1}{2}\times\frac{3\sqrt{41}}{2}\times\frac{6\sqrt{41}}{5}\right)$ Note that if the method is correct but slips are made when simplifying ddM1	
any of the calculations, the method mark can still be awarded	
Method 3: 2 Triangles	
$\frac{1}{2} \times (5 + 2.5') \times 6' + \frac{1}{2} \times (9.8' - 5) \times 6' = \dots$	
Method 4: Shoelace method	
$\frac{1}{2} \begin{vmatrix} 5 & 9.8 & -2.5 & 5 \\ 6 & 0 & 0 & 6 \end{vmatrix} = \frac{1}{2} (0+0-15)-(58.8+0+0) = \frac{1}{2} -73.8 = \dots$	
(must see a correct calculation i.e. the middle expression for this determinant method)	
Method 5: Trapezium + 2 triangles	
$\frac{1}{2} \times (2.5') \times 2' + \frac{1}{2} (2'' + 6'') \times 5 + \frac{1}{2} \times (9.8'' - 5') \times 6' = \dots$	
$= 36.9$ $= 36.9 \text{ cso oe e.g } \frac{369}{10}, 36\frac{9}{10}, \frac{738}{20}$ but not e.g. $\frac{73.8}{2}$	
Note that the final mark is cso so beware of any errors that have	
fortuitously resulted in a correct area.	ı
(8 marks	(4)