## Trigonometric Equations and Identities - Edexcel Past Exam Questions 2

1. Find the solutions of the equation $\sin \left(3 x-15^{\circ}\right)=\frac{1}{2}$, for which $0 \leq x \leq 180^{\circ}$.

Jan 12 Q9 (edited)
2. (a) Show that the equation

$$
\tan 2 x=5 \sin 2 x
$$

can be written in the form

$$
\begin{equation*}
(1-5 \cos 2 x) \sin 2 x=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x \leq 180^{\circ}$,

$$
\begin{equation*}
\tan 2 x=5 \sin 2 x, \tag{5}
\end{equation*}
$$

giving your answers to 1 decimal place where appropriate.
3. Solve, for $0 \leq x<180^{\circ}$,

$$
\begin{equation*}
\cos \left(3 x-10^{\circ}\right)=-0.4, \tag{7}
\end{equation*}
$$

giving your answers to 1 decimal place. You should show each step in your working.
Jan 13 Q4
4. (i) Solve, for $-180^{\circ} \leq x<180^{\circ}$,

$$
\tan \left(x-40^{\circ}\right)=1.5,
$$

giving your answers to 1 decimal place.
(ii) (a) Show that the equation

$$
\sin \theta \tan \theta=3 \cos \theta+2
$$

can be written in the form

$$
\begin{equation*}
4 \cos ^{2} \theta+2 \cos \theta-1=0 . \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$,

$$
\sin \theta \tan \theta=3 \cos \theta+2,
$$

showing each stage of your working.
5. (i) Solve, for $0 \leq \theta<180^{\circ}$

$$
\begin{equation*}
\sin \left(2 \theta-30^{\circ}\right)+1=0.4 \tag{5}
\end{equation*}
$$

giving your answers to 1 decimal place.
(ii) Find all the values of $x$, in the interval $0 \leq \theta<360^{\circ}$, for which

$$
\begin{equation*}
9 \cos ^{2} x-11 \cos x+3 \sin ^{2} x=0 \tag{7}
\end{equation*}
$$

giving your answers to 1 decimal place.
You must show clearly how you obtained your answers.

## June 13(R) Q9

6. (i) Solve, for $0 \leq \theta<360^{\circ}$, the equation $9 \sin \left(\theta+60^{\circ}\right)=4$, giving your answers to 1 decimal place. You must show each step of your working.
[Solutions based entirely on graphical or numerical methods are not acceptable.]
June 14 Q7(edited)
7. (i) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
\frac{\sin 2 \theta}{(4 \sin 2 \theta-1)}=1
$$

giving your answers to 1 decimal place.
(ii) Solve, for $0 \leq x<2 \pi$, the equation

$$
5 \sin ^{2} x-2 \cos x-5=0
$$

giving your answers to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
8. (i) Solve, for $0 \leq \theta<\pi$, the equation

$$
\sin 3 \theta-\sqrt{ } 3 \cos 3 \theta=0
$$

giving your answers in terms of $\pi$.
(ii) Given that

$$
4 \sin ^{2} x+\cos x=4-k, \quad 0 \leq k \leq 3,
$$

(a) find $\cos x$ in terms of $k$.
(3)
(b) When $k=3$, find the values of $x$ in the range $0 \leq x<360^{\circ}$.
(3)

June 15 Q8
9.
(ii) Solve, for $0 \leq x<360^{\circ}$,

$$
4 \cos ^{2} x+7 \sin x-2=0
$$

giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
June 16 Q6(edited)
10. In the triangle $A B C, A B=16 \mathrm{~cm}, A C=13 \mathrm{~cm}$, angle $A B C=50^{\circ}$ and angle $B C A=x^{\circ}$

Find the two possible values for $x$, giving your answers to one decimal place.
11. (a) Show that the equation

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

can be written in the form

$$
\begin{equation*}
(3 \sin x-1)^{2}=2 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant x<360^{\circ}$,

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

giving your answers to 2 decimal places.

