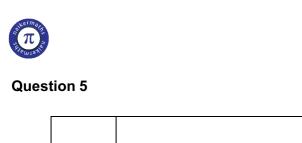


A level Statistics Paper 6 MARK SCHEME

Question Number	Schomo		
(a)	(a) $(3-6)$ mins has width 4 and is 2cm, $(11-15)$ mins has width 5 so is 2.5 (cm)		
	(3-6) mins has frequency of 38 and area of 19 cm ² so <u>2 people(per cm²)(o.e.)</u>		
	<u>or</u> frequency density $= \frac{38}{4} = 9.5 = \text{height}$		
	$(11-15)$ mins has area of $2.5 \times h \text{ cm}^2$ so $h = \frac{12}{2 \times 2.5} = 2.4$ (cm) allow $\frac{12}{5}$	A1	
		(3)	
(b)	$Q_2 = (6.5) + \frac{12}{25} \times 2 \text{ or } (8.5) - \frac{13}{25} \times 2$	M1	
	$=$ awrt $\frac{7.46}{}$	A1	
		(2)	
(c)	$\sum fx = 38 \times 4.5 + + 7 \times 18 = 811.5$ and $\overline{x} = \frac{811.5}{100}$, = awrt <u>8.12</u>	M1, A1	
		(2)	
(d)	$\sigma = \sqrt{\frac{8096.25}{100} - \overline{x}^2} = \sqrt{80.9625 - "65.85"} = \sqrt{15.1(0)}, = \text{awrt } \underline{3.89}$	M1, A1	
	,	(2)	
	Notes		
(a)	-		
	M1 for 2 people per cm ² or a correct numerical equ'n for h or their width × height = 6		
	A1 for height of 2.4 (cm) [If just see 2.4 and 2.5 it must be clear which is h and which w]		
(b)	M1 for a correct expr'n with sign (ignoring end point). Condone 12.5 for use	f(n+1)	
(0)			
	A1 for awrt 7.46 (or 7.5 if using $(n + 1)$ but must see evidence of $(n + 1)$ approach)		
(c)	M1 for an attempt at Σ fx (i.e. full expression or $650 \le \Sigma$ fx ≤ 950) and division by 100		
	Σ fx may be in the table.		
	A1 for 8.115 or awrt 8.12 (allow 8.11) [May be in (d) but must be labelled e.g. $\overline{x} =$]		
(d)	M1 for a correct expression (ft their mean) including $$. Allow s leading to	15.26	
(1)	···· ·································		
	A1 for awrt 3.89 Allow use of <i>s</i> = awrt 3.91 [Correct ans. only to (c) or (d) full marks]		

Question Number	Scheme	Marks	
(a)	$P(G_1) + P(R_1 \cap G_2) + P(Y_1 \cap G_2) \underline{\text{or}} P(GY) + P(GR) + P(RG) + P(YG) (\text{o.e.})$	M1	
	$= \frac{1}{64} + \frac{r}{64} \times \frac{1}{63} + \frac{y}{64} \times \frac{1}{63} = \frac{1}{64} + \frac{r+y}{64 \times 63} \underline{\text{or}} 2 \times \frac{r+y}{64 \times 63}$	A1	
	$= \frac{1}{64} + \frac{63}{64 \times 63} \text{ or } \frac{2 \times 63}{64 \times 63} \text{ or } \frac{1}{64} + \frac{1}{64} \text{ or }$	M1	
	$=\frac{1}{32}$ or 0.03125	A1	
			(4)
<mark>(b)</mark>	$P(R_1 \cap R_2) = \frac{r}{64} \times \frac{r-1}{63} = \frac{5}{84}$	M1A1	
	$r(r-1) = 5 \times 64 \times 63 \div 84 = 240$ hence $r^2 - r - 240 = 0$ or $r^2 - r = 240$ (*)	A1cso	
(c)	$r^{2} - r - 240 = (r - 16)(r + 15) \{= 0\}$ or $16^{2} - 16 - 240 = 256 - 256$ or $\frac{16}{44} \times \frac{15}{63} = \frac{5}{84}$	M1	(3)
	so $r = 16$ and rejecting -15 (*)	A1cso	(2)
(d)	$P(\ge 1 \text{ red}) = P(RG) + P(GR) + P(RY) + P(YR) + P(RR) \underline{\text{ or }}_{252} + \frac{2y}{252} + \frac{15}{252} (\text{o.e.})$	M1,	
	$\underline{\text{or }} \mathbb{P}(R_1) + \mathbb{P}(R_1' \cap R_2) \underline{\text{or }} \frac{16}{64} + \frac{48}{64} \times \frac{16}{63} \underline{\text{or }} 1 - \frac{48}{64} \times \frac{47}{63}, = \frac{37}{\underline{84}}$	A1	
	Require: $\frac{P(R_1 \cap R_2)}{P(\text{at least one red})} = \frac{\frac{5}{84}}{\frac{37}{84}}$, $= \frac{5}{\frac{37}{24}}$ or 0.135	M1, A1	
		[Total 1	(4) 31
	Notes	[I Gtal I	

	Notes
(a)	1 st M1 for at least 2 correct cases. May be in symbols or probs. May be in tree diagram
	Use of $r = 16$ or $y = 47$ can score maximum of 1^{st} M1 then A0M0A0
	1st A1 for all cases and their assosciated probs added
	2^{nd} M1 for combining probabilities and using $r + y = 63$
	$2^{nd} A1$ for $\frac{1}{32}$ or an exact equivalent (correct answer only 4/4)
(b)	M1 for $\frac{r}{64} \times g(r) =$ where $g(r)$ is any linear function of r
	1^{st} A1 for any correct equation in r
	2 nd A1cso for correctly simplifying to the given equation with no incorrect working seen.
	There should be at least 1 intermediate step seen
(c)	M1 for correct factors or completing square or use of formula or substitution
	A1cso for concluding $r = 16$ and rejecting -15 (e.g. crossing out etc)
(d)	1st M1 for a correct expression for at least one red. May be in symbols or probs. or in a tree
	1^{st} A1 for $\frac{37}{84}$ (o.e.) as a single fraction or awrt 0.440 [May be implied by correct answer]
	2^{nd} M1 for a ratio of probabilities (denom may be in symbols) with numerator of $\frac{5}{84}$ (o.e.)
	2^{nd} A1 for $\frac{5}{37}$ or an exact equivalent
	37



(a) Only 2 outcomes Heads and Tails oe Constant probability of spinning a Head/Tail oe Coin is spun a fixed number of times oe Each spin of the coin is independent oe (b) $T \sim B(6, 0.5)$ $P(T \le 5) - P(T \le 4) = 0.9844 - 0.8906$ or $6\left(\frac{1}{2}\right)^5\left(\frac{1}{2}\right)$ oe M1 $= 0.09375$ or $\frac{3}{32}$ oe awrt 0.0938 A1	1 (2)
Coin is spun a fixed number of times oeB1 BEach spin of the coin is independent oeB1 BT ~ B(6, 0.5)TP(T \le 5) - P(T \le 4) = 0.9844 - 0.8906 or $6\left(\frac{1}{2}\right)^5\left(\frac{1}{2}\right)$ oeM1	
(b) Each spin of the coin is independent oe $T \sim B(6, 0.5)$ $P(T \le 5) - P(T \le 4) = 0.9844 - 0.8906 \text{ or } 6\left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right) \text{ oe}$ M1	
(b) $T \sim B(6, 0.5)$ $P(T \le 5) - P(T \le 4) = 0.9844 - 0.8906 \text{ or } 6\left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right) \text{ oe}$ M1	
$P(T \le 5) - P(T \le 4) = 0.9844 - 0.8906$ or $6\left(\frac{1}{2}\right)^5\left(\frac{1}{2}\right)$ oe M1	(2)
$P(T \le 5) - P(T \le 4) = 0.9844 - 0.8906$ or $6\left(\frac{1}{2}\right)^5\left(\frac{1}{2}\right)$ oe M1	
$= 0.09375 \text{ or } \frac{3}{32} \text{ oe}$ awrt 0.0938 A1	
52	
	(2)
(c) $P(T=4,5,6) = 1 - P(T \le 3)$ M1	
= 1 - 0.6563	
$= 0.3437 \text{ or } \frac{11}{32}$ awrt 0.344 A1	
	(2)
(d) $P(H=3,4,5,6) = 1 - P(H \le 2)$ B1M	
= 1 - 0.8306	
$= 0.1694 \text{ or } \frac{347}{2048}$ awrt 0.169 A1	
	(3)
Т	otal 9

		Note	s	
(a)	B1 A correct statement - does not need to be in context			
	B1 A second correct statement in context include coin or heads or tails(do not allow H and T) or spins/flip oe.			
(b)	M1 [writing or using B(6, 0.5) and writing or using P($T \le 5$) – P($T \le 4$)] or $[6\left(\frac{1}{2}\right)^6$ oe]			
(c)				
(d)	B1	writing/using B(6, 0.25) and $P(H \ge 3)$ oe	writing/using B(6, 0.75) and P($T \le 2$	3)
	M1d	dep on B1 for $1 - P(H \le 2)$	dep on B1 $(0.25)^6 + 6(0.75)(0.25)^5$ $+15(0.75)^2(0.25)^4 + 20(0.25)^4$	0.75) ³ (0.25) ³
	A1	awrt 0.169	awrt 0.169	
	NB	Only accept correct use of H and T in the probability statement unless their variable is correctly defined		
	NB	awrt 0.169 with no incorrect wor	rking gains B1M1A1	

Question Number	Scheme		Marks	
(a)			B1	
	$V \sim B(40, 0.35)$ $P(V \ge 18) = 1 - P(V \le 17)$	or $P(V \ge 19) = 0.0699$	M1	
	= 1 - 0.8761	$P(V \ge 20) = 0.0363$		
	= 0.1239	$CR V \ge 20$	A1	
	Accept H0 or not Significant or 18 does not lie in the critical region			
	There is insufficient evidence that the proportion/amount/number/		A1cso	
	percentage of customers who bought organic vegetables has increased.			(5)
(b)	$E \sim B(50, 0.35)$		M1	
	$P(E \le 10) = 0.0160$ $P(E \ge 25) = 0.0207$ $P(E \le 11) = 0.0342$ $P(E \ge 24) = 0.0396$		1	
	CR $E \le 10$ $E \ge 25$		A1A1	(3)
(c)	The manager's claim is supported or there is sufficient evidence that the proportion of customers buying organic eggs is different from those buying organic vegetables.		B1ft	(1)
(d)	0.016 + 0.0207 = 0.0367 or 3.67%	awrt 0.0367 or 3.67%	B1	(1)
	Notes			

	Notes	
(a)	B1 both hypotheses correct with p or π	
	M1 writing or using $V \sim B(40, 0.35)$ and $1 - P(V \le 17)$ or $P(V \le 17)=0.8761$ or awrt 0.1	
	OR writing $P(V \ge 19)=0.0699$ or $P(V \ge 20)=0.0363$ leading to a CR. Implied by correct C	
	A1 awrt 0.124 or $V \ge 20$ or $V > 19$ allow any letter	
	M1d dep on previous M being awarded. ft their CR or probability. A correct statement -	
	do not allow contradicting non-contextual comments	
	A1 cso all previous marks must be awarded. A correct statement in context. Need	
	Bold words. NB award M1A1 for a correct contextual statement on its own. If there as	
	no hypotheses or they are the wrong way around, then M0A0	
(b)		
	A1 $E \le 10$ oe A1 $E \ge 25$ oe, allow any letter. Condone missing letter	
	NB If CR written as probabilities and both are correct or CR written as $10 \ge E \ge 25$ oe	
	award M1A1A0. If just give CV 10 and 25 given award M1A0A0	
(c)	B1 A correct statement including the words managers claim or eggs and vegetable(s)	
	(or veg) ft their 2 tail CR. Cannot be awarded if no CR given in (b)	

Q5	Scheme	Marks
а	r = 0.937 (3 s.f.)	A1
b	Ho: $\rho = 0$, H1: $\rho \neq 0$, critical value = ±0.6319. Reject H0. There is evidence that there is a correlation between the age of a machine and its maintenance costs.	M1 A1 A1
		(4 marks)